PVC BRAID REINFORCED TYPE RPVC & HDPVC TECHNICAL DATA

APPLICATIONS:

- Water Supply and Draining
- Transfer of various Fluids and Powder
- Supplying Water, Gas, Oil etc. in Agriculture and Industry
- Other Special Purpose (refer to technical)

CHARACTERISTICS:

- Excellent Abrasion Resistance
- Flexibility Good
- High Resistance to Alkalis/Acids
- Silicone Free
- Cadmium Free
- Low Toxicity
- Transparency Excellent
- Manufactured to Comply with BS6066 & ISO5774
- The Hose has been Tested and complies with US FDA Standards (Food Grade)
- Durable, Anti-Cold Proof, Non-inflated

- High-Flexibility, Light-Weight and Easy to Handle
- No Fissure Phenomenon by Ultraviolet Rays and Direct Rays of the Sun
- Little Expansion or Contraction
- Temperature Range -20°C to +65°C
- All technical specifications remain the same for colour variants in each of the corresponding sizes

Part No	Nominal Dimension Inch	Size I.D. x O.D.	MAX. Working Pressure bar	Burst Pressure bar	Bend Radius	Weight KG/Roll
		mm			mm	
RPVC18	1/8"	3 x 8	13	50	15	1.10
RPVC532	5/32"	4 x 9	13	50	17	1.80
RPVC316	3/16"	5 x 10	13	50	20	2.10
RPVC14	1/4"	6 x 11	15	65	25	2.30
RPVC516	5/16"	8 x 13	15	58	33	2.70
RPVC38	3/8"	10 x 15	12	45	40	3.20
RPVC12	1/2"	13 x 18	12	40	52	4.00
RPVC58	5/8"	16 x 21	10	35	64	5.00
RPVC34	3/4"	19 x 25	10	32	76	7.10
RPVC1	1"	25 x 31	9	28	100	8.90
RPVC114	1.1/4"	32 x 40	6	26	125	16.00
RPVC112	1.1/2"	38 x 46	5	20	152	19.00
RPVC2	2"	50 x 60	3	17	200	31.00
						60 44
HDPVC14	1/4"	6.5 x 11.5	16	65	30	2.50
HDPVC516	5/16"	8 x 13.5	16	58	35	3.30
HDPVC38	3/8"	10 x 16	15	45	45	3.50
HDPVC12	1/2"	12.5 x 18.5	12	40	52	5.00
HDPVC58	5/8"	16 x 23	10	35	74	7.80
HDPVC34	3/4"	20 x 26	10	32	80	7.30
HDPVC1	1"	25 x 33	10	28	110	12.80
HDPVC114	1.1/4"	32 x 41	6	26	130	18.90
HDPVC112	1.1/2"	40 x 49	6	20	165	23.00
HDPVC2	2"	50 x 62	3	17	220	38.00

Given working pressure are based on an ambient temperature of 20°C. Due to the natural properties of PVC as the ambient temperature increases the pressures the hose will withstand decreases at a average rate of 15% per increase of 10°C and in similar increments thereafter.

CHEMICAL RESISTANCE CHART

_				
N	PUR	PE	PVC	
	4 4 4 4 4 3	1 1 2 1 - 2	4 4 1 - 1	Acetic Acid. Glac Acetic acid. 30% Acetone Acetylene Akazene Aluminum Chorid
	3 4 3 4 1 1	- 2 - 1 1	- 1 - 1 1	Aluminum Nitrate Ammonia Anhyar Ammonia Gas (co Ammonia Gas (ho Ammonium Chior Ammonium Sulfa
1 -	3 4 3 4 1 1 1 4 4 4 1 1 4 3 2 2 3 3 3 1 2 4 3 2 4 4 1 1	- 2 1 1 2 2 2 1 1 1 1 1 1 3 1 1 - 4 3 - 1 1 2 2 2 3 2 2 2	1 - - 3 1 - - 1 1 1 1	Amyl Alcohol Amyl Naphthalen Animal Fats Aqua Regia Arsenic Acid Asphalt ASTM Fuel A ASTM Fuel A ASTM Fuel C Barium Choride (Beer Beet Sugar Liquo
1	3 2 4 1 1	3 - - 1 1	3 - - 1 2 1	Benzene Benzine Blast Furnace Ga Bleac Solutions Borax Boric Acid
- 4 - 1	4 2 4 2 1 1	- 4 - 3 -	- 3 - 3 -	Brake Fluid Brine Bromine Water Bunker Oil Butane Butter
3 - 1 - 1 -	4 4 1 1 1	1 1 2 2 - -	2 1 1 - -	Butyl Alcohol Butylene Calcium Chioride Calcium Hydroxic Calcium Nitrate (Calcium Sulfide (
- - - 3	4 3 1 1 1 4	- 2 3 2 2 2 2	1 3 1 1 1 2	Cane Sugar Lique Carbollc Acid Carbon Dioxide Carbonic Acid Carbon Monoxide Carbon Tetrachlo
- 4 3 - 4	1 4 4 4 4 4	- 2 - 3 - 1 1 -	1 1 4 - 1	Castor Oil Chlorine (dry) Chlorine (wet) Chloroform Chlorox Chromic Acid
1	1 3 2 1 4 1	1 - - - 2	2 - 1 1 - 1	Citric Acid Coal Tar Coconut Oil Cod Liver Oil Coke Oven Gas Copper Chloride
- - 4 1	1 1 4 1 4	2 3 2 3 2 -	1 2 4 4 -	Copper Chloride (Com Oil Cotton Seed Oil Creosot Cychlohexane Denatured Aicoh
	4 3 4 3 4 3 4 4 4 2 2 3	2 3 2 3 2 - - - - - - - -	1 - - 4	Detergent Solutic Diesel Oil Dioxane Dowtherm Oil Dry Cteaning Flui Ethane
3	4 4 2 2 3	-		Ethyl Acrylate Ethyl Alcohol Ethyl Benzine Ehtyl Cellulose Ethyl Chlonde Ethyl Ether

Ethyl Ether

AL A		Ŋ			
	N	PUR	PE	PVC	
acial %	1	4 4	1	4 4	
	1	4 4	1 1 2 1 - 2	4 1	
ide (aq)	1	4 4 4 4 3	2	1	
te (aq) arous	1	3 4	-2	- 1	
arous cold) hot) pride (aq) iate (aq)	-	3 4 3 4 1 1	- 2 - 1 1	-	
oride (aq) iate (aq)	1	1	1	1	
ene	1	4 4	2	1	
	1	1 4	- 2	- 3	
	-	4 4 1 4 3 2 2 3 3 1 2 4	2 - 2 2 1 - 1 1 1 1	1	
	1	3 3	- 1	- 1	
(aq)	- 1	1 2	1	1	
lors	1			3	
as	1	2 4	1	:	
	-	3 2 4 4 1 1	1	1 2 1	
	-				
	- 4	2 4 2	4	3 -	
	1	4 2 4 2 1 1	3	3	
			3 - - 1 1 - 4 - - 3 - 1 1 2 2 - -	2	
e (aq) ide (aq)	1	4 1 1	1 2 2	1	
(aq) (aq)	1 -	4 4 1 1 1 1	-	÷.	
uors	-			1	
	-	4 3 1 1 1 4	- 2 3 2 2 2	1 1	
de Ioride	- 3	1 4	2 2	1 2	
	- 4	1 4	-2	4441-1 -1 -1111 3 -121 -3 -2111 - 131112 1114 -1 2	
	4 4 3 - 4	1 4 4 4 4 4 4	- 3	1 4	
	- 4	4 4	- 2 - 3 - 1 1	1	
	1	1 3	1	2	
	1	2 1 4 1	1	1 1	
e (aq)	-	4	- - 2	1	
e (aq)	1	1	2 3	1 2	
	- 4	1 1 4 1 4	232	2 4	
hol	-		-	-	
ion	41	4 3 4 3 4 3	2 3 2 3 2 - 1 3 - - - - - - - -	1 1 1 2 2 4 4 4 - - - - - - - -	
uids	÷	4 3 4	-	-	
	i		-	4	
	3	4 4 4 2	-	-	
		2	1	-	

PE	PVC	
1 1 2 1 - 2	4 4 4 1 - 1	Ethylene Chloride EthyleneGlycol Ethylene Oxide Ethylene Trichloride Ferric Chloride (aq) Ferric Nitrate (aq)
- 2 - 1 1	- 1 - 1 1	Ferric Sulfate (aq) Fluorine (Liqued) Formaldehyde (RT) Formic Acid Freon 11 Freon 12
- 2 - 1 1 2 2 2 1 2 2 2 1 1 1 1 1 1 3 1 1	1 - - 3 1 - - 1 1 1 1	Freon 22 Fuel Oil Futural Glucose Glue Glycorin Glycols Green Sultate Liquor Hexane Hydraulic Oil Hydrochloric Acid (cold) 37 % Hydrochloric Acid (hot) 37% Hydrochloric Acid (hot) 37%
3 - - 1 1	3 - 1 2 1	Hydrofluoric Acid (Conc.) Hot Hydrogen Gas Isobutyl Alcohol Isooctane Isopropyl Acetate Isopropyl Alcohl
- 4 - - 3	- 3 - 3 -	Isopropyl Ether Kerosene Lacquers Lacquer Solvents Lard Lavender Oil
- 1 2 2 - - 2 3 2 2 2 2 2	2 1 1 - -	Lead Acetate (aq) Linseed Oil Liquified Petrolateum Gos Lubricating Oils Lye Magnesium Chloride (aq)
- 2 3 2 2 2	1 3 1 1 2	Magnesium Hydroxlde (aq) Mercury Methane Methyl Acetate Methyl Acrylate Methyl Alcohol
- 2 - 3 - 1	1 1 4 - 1	Methyl Butyl Ketone Methyl Cholride Methylene Cholride Methyl Ethyl Ketone Methyl Isobutl Ktone Milk
1 - - - 2	2 - 1 1 - 1	Mineral Oil Naphtha Naphtalene Natural Gas Neatsfoot Oil Nitric Acid (Conc.)
2 3 2 3 2 -	1 2 2 4 4 -	Nitric Acid (Dilute) Nitroethane Nitrogen N-Octane Oleic Acid Oleum Spirits
2 3 2 - 1 3 - - - - - -	1 - - 4	Olive Oil Oxygen-Cold Oxygen (200-400°F) Paint Thnner, Duco Perchloric Acid Perchloroethylene
•	•	Petrolenm-Below 250°F Petroleum-Above 250 F Phenol Phenyl Ethyl Ether Phosphoric Acid-45%

Phosphoric Acid-45% Pickling Solution

PUR	PE	PVC	
2 4 1 1 4 1	- - 1 1 1	4 - 1 1 1 1	Picric Acid Patassium Acetate (aq) Patassium Chloride (aq) Patassium Cyanide (aq) Patassium Hydroxide (aq) Producer Gas
3 4 4 4 4 4	3 - - - -	1	Propane Propyl Alcohol Propylene Propylene Oxicde Pydraul, 10E, 29 ELT Pydraul 30E, 50E, 65E
4 4 2 1 1 1			Pydraul,115E Pydraul 230E, 312C, 540C Rapessed Oil Red Oil (MIL-H-5606) RJ-1 (MIL-F-2338 B) RP-1 (MIL-F-23576 C)
2 4 1 1 1 4	- - - 1 - 1 2 -	1 - 1 1 -	Salt Water Sewage Silicate Esters Silicone Oils Silver Nitrate Skydrol 500
4 3 1 4 4 1	- 3 1 2 1 -	- 1 1 1 2 -	Skydrol 700 Soap Solutions Sodium Chloride (aq) Sodium Hydroxide (aq) Sodium Peroxide (aq) Sodium Phosphate (aq)
1 2 4 4 1 3	1 1 - 3 -	1 1 - 3 4	Sodium Sultate (aq) Soy Bean Oil Steam Under 300°F Steam Over 300°F Stoddard Solvent Styrene
4 3 4 4 3 1	- 1 3 - 2 2	- 1 4 - 1 1	Sucrose Soluttion Sulfuric Acid (Dilute) Sulfuric Acid (Conc.) Sulfuric Acid (20% Oleum) Sulfurous Acid Tonnic Acid
4 4 1 1 4 4	2 3 - - 3	4 4 - 3 4	Tetrochlorethlene Toluene Transformer Oil Tronsmission Fluid Type A Trichloroethane Trichtoroethylene
1 4 3 4 4 1	3 3 3 2 - 1	- 2 4 1 - 1	Turbine Oil Turpentine Vamish Vinegar Vinyl Chloride Water
2 1 3 4 4 1	3 - 3 1 -	1 - 4 - 1	Whiskey White Oil Wood Oil Xylene Zinc Acetate (aq) Zinc Chloride (aq)

NYLON 6, 12 & POLYURETHANE ETHER **BASE/PE POLYETHYLENE/PVC** POLYVINYL CHLORIDE

Please Note: The above ratings are very general guidelines and designed only to be used as an initial screening tool.

Careful testing under actual conditions essential. Accuracy for these ratings is not given or implied.

- Ratings: 1. Little or no impact/ 2. Minor effect/ 3. Moderate effect/
- 4. Severe effect.